

Technical Whitepaper for ZillionCoin

UTXO Proof-of-Work (PoW)

Multi-algo CPU Miner ZillionFLUX

WEBSITE: www.ZillionCoin.com

OPEN SOURCE: https://github.com/zillioncoin/zillioncoin

ZILLIONGRID:

https://www.zillionpress.com/ZillionGrid_WhitePaper_Version1_Phase1.pdf

http://www.zillioncoin.com/
https://github.com/zillioncoin/zillioncoin
https://www.zillionpress.com/ZillionGrid_WhitePaper_Version1_Phase1.pdf

Executive Summary

ZillionCoin development begain in 2014 and emerged during a pivotal era in

cryptocurrency history—just years after Bitcoin’s inception—when GPU mining

surged and early talks of specialized ASIC hardware threatened to monopolize

mining rewards for many years to come. The rise of mining pools further

marginalized individual CPU miners, who found themselves powerless against vast

mining farms and resource concentration.

Recognizing this challenge, ZillionCoin was designed to restore mining equity and

decentralization by radically rethinking the mining protocol. Its groundbreaking

approach requires miners to cryptographically sign each mined block themselves,

binding mining rewards directly to individual control and eliminating the viability

of large-scale mining pools.

At its core, ZillionCoin developed ZillionFLUX, a unique, multi-algorithm mining

sequence that rotates through six carefully selected cryptographic hash functions.

This design dramatically increases ASIC resistance, enabling CPU miners to remain

competitive and actively contribute to network security and growth.

Differentiating from Bitcoin’s four-year halving events, ZillionFLUX implements a

smooth and continuous block reward reduction. This approach avoids abrupt

reward shifts, mitigating speculation-driven price volatility and fostering a more

stable value throughout the coin’s lifecycle. ZillionCoin prioritizes stability over

speculation, aiming to attract a professional business and gaming audience where

real-world applications and utility drive value accumulation rather than price

manipulation.

Publicly launched and properly announced in August 2017, ZillionCoin was

introduced with complete transparency and fairness. It features no pre-mine, no

hidden “easter eggs,” no administrative block rewards, and no surprises. The

network was simply and fairly launched to welcome anyone willing to participate,

reinforcing its commitment to true decentralization and equitable access.

By empowering individual miners through miner-bound block signing and

algorithmic diversity, ZillionCoin pioneers a fair, secure, and truly decentralized

cryptocurrency ecosystem—where every participant can meaningfully engage in

building the blockchain network.

MINING ZILLIONCOIN IS AS EASY AS CLICKING START

CPU MINER INCLUDED IN THE ZILLIONCOIN WALLET

Introduction

ZillionCoin is a next-generation proof-of-work cryptocurrency designed to

enhance decentralization by preventing mining pools through novel cryptographic

and protocol innovations. It employs a rotating multi-algorithm mining scheme

combined with miner private key binding to blocks, enforcing solo mining and

increasing resistance to specialized mining hardware.

The ZillionCoin miner is bult directly into the wallet, just click the START button

and you’re part of the ZillionCoin crypto experience. You can even throttle CPU

usage so we don’t use all of your resources and you can keep working while

mining!

This whitepaper details the entire system architecture, mining processes, wallet

internals, network operations, and RPC interfaces integral to ZillionCoin’s

operation.

System Architecture Overview

The ZillionCoin system extends the foundational Bitcoin protocol with critical

modifications targeting miner decentralization:

 Multi-algorithm Mining Chain: Mining proof-of-work utilizes six

cryptographic hash algorithms in rotation, preventing ASIC dominance on

any single algorithm.

 Miner Private Key Binding: Miners digitally sign the block header,

embedding ownership and preventing pooling.

 Enhanced Block Structure: The block header contains additional fields

MinerSignature and hashWholeBlock ensuring miners control the entire

block content and keys.

 Wallet Integration: The wallet manages key generation, encryption,

transaction creation, and miner key control.

 Robust RPC Interface: Provides comprehensive mining, wallet, and network

control commands supporting ZillionCoin’s unique protocols.

Multi-Algorithm Mining and Pool Prevention

Mining Problem in Traditional POW Systems

Traditional proof-of-work blockchains suffer from mining centralization through

pools, which concentrate hashing power, enabling possible 51% attacks and

weakening the decentralized trust model.

ZillionCoin’s Solution

ZillionCoin addresses this by requiring miners to:

 Know the private key controlling the coinbase transaction to spend mining

rewards.

 Possess full knowledge of the entire block content before mining.

 Compute a digital signature (MinerSignature) on the block header, binding

miner identity and preventing delegation.

 Use a multi-algorithm hash chain cycling through six strong cryptographic

hashes to resist ASIC specialization.

Smooth Supply

Multi-Algorithm Chain

The mining hash function for a block of height h computes:

 Starting index = h mod 6 to rotate algorithm order.

 Applies six hash functions in sequence starting from the index, cycling

through the following:

Index Algorithm

0 SPREAD

1 BLAKE

2 SHAVITE

3 JH

4 KECCAK

5 ECHO

Each hash processes the output of the previous, ensuring miners must efficiently

compute all six hashes per nonce iteration.

Algorithm Rotation Benefits

 Resists ASIC optimization for any single algorithm.

 Maintains mining competitiveness for general-purpose hardware.

 Enhances network security by diversifying cryptographic assumptions.

Mining Algorithms: Detailed Implementations

SPREAD Hash

 Source: src/hash.cpp

 Function: uint256 SpreadHash(const unsigned char* data, size_t len)

 Combines multiple cryptographic primitives to maximize diffusion and

resist optimization shortcuts.

 Example logic includes SHA-256 layers combined with custom mixing.

BLAKE Hash

 Source: src/sphlib/blake.h & .c

 Implements Blake2b, a fast, secure hash with good software and

hardware efficiency.

SHAVITE Hash

 Source: src/sphlib/shavite.h & .c

 A SHA-3 finalist based on AES rounds, offering strong cryptographic

resistance.

JH Hash

 Source: src/sphlib/jh.h & .c

 Another SHA-3 finalist known for robustness against differential

cryptanalysis.

KECCAK Hash

 Source: src/sphlib/keccak.h & .c

 The NIST standard SHA-3 winner, widely accepted and secure.

ECHO Hash

 Source: src/sphlib/echo.h & .c

 High-throughput cryptographic hash designed for efficient computation

and strong security.

Multi-Algorithm Hash Chain Code Snippet

uint256 MultiAlgoHash(const unsigned char* data, size_t len, int blockHeight) {

 int startIndex = blockHeight % 6;

 uint256 hash = uint256(data, len);

 for (int i = 0; i < 6; i++) {

 int algoIndex = (startIndex + i) % 6;

 switch (algoIndex) {

 case 0: hash = SpreadHash(hash.data(), hash.size()); break;

 case 1: hash = BlakeHash(hash.data(), hash.size()); break;

 case 2: hash = ShaviteHash(hash.data(), hash.size()); break;

 case 3: hash = JhHash(hash.data(), hash.size()); break;

 case 4: hash = KeccakHash(hash.data(), hash.size()); break;

 case 5: hash = EchoHash(hash.data(), hash.size()); break;

 }

 }

 return hash;

}

Wallet Architecture and Data Flow

Key Generation and Storage

 The wallet generates secp256k1 elliptic curve key pairs.

 Public keys are hashed and encoded into Base58Check addresses.

 Private keys are stored encrypted using a passphrase (encryptwallet

command) and saved persistently in the wallet database (walletdb.cpp).

 A key pool is maintained (keypoolrefill) to allow rapid generation of new

addresses.

Address and Account Management

 Addresses are grouped under “accounts” for organizational purposes.

 Commands like getaccount, setaccount, and getaddressesbyaccount

facilitate management.

Transaction Creation and Signing

 The wallet constructs transactions by selecting unspent outputs (UTXOs)

sufficient to cover the amount plus fees (coincontrol.h).

 Outputs include recipient addresses and change back to the wallet.

 Inputs are signed with private keys using ECDSA, incorporating compact

signatures that recover the public key internally to reduce size.

Transaction Broadcast and Confirmation

 Signed transactions are broadcast using sendrawtransaction.

 The wallet listens for inclusion of transactions in blocks, updating balances

accordingly.

 Balances tracked as confirmed, unconfirmed, and immature (e.g., coinbase

maturity).

Mining Reward Handling

 The wallet generates coinbase transactions paying mining rewards to

controlled addresses.

 Coinbase outputs mature after a defined number of confirmations (e.g.,

100 blocks).

Transaction Lifecycle

 Creation: User or mining software initiates a transaction request.

 Input Selection: Wallet selects UTXOs to fund transaction.

 Construction: Outputs are created, including recipient and change.

 Signing: Wallet signs transaction inputs with private keys.

 Broadcast: Transaction sent to network via RPC commands.

 Validation: Network nodes validate transactions before including them

in blocks.

 Confirmation: Transactions confirmed as blocks are mined on top.

 Wallet Update: Wallet updates balances and transaction history

accordingly.

Mining RPC Commands Walkthrough

Below is a full explanation of all listed RPC commands, focusing on mining and

related wallet/network operations:

Mining Control and Info

 getmininginfo: Provides mining statistics such as difficulty, hash rate, block

height, and active algorithm rotation.

 getblocktemplate: Returns data needed to build a candidate block,

including transactions and current difficulty. Miners must follow the multi-

algorithm sequence indicated by block height.

 submitblock: Accepts mined block data, which must include the miner’s

signature and comply with multi-algo hash requirements.

 getnetworkhashps: Estimates total network hash rate, including all hashing

algorithms.

 setgenerate: Enables or disables mining on the local node, allowing control

over CPU thread usage.

 gethashespersec: Returns the local miner’s current hash rate.

 getwork: Legacy command to request and submit work (less used with

getblocktemplate).

Wallet and Transaction Management

 Commands like sendtoaddress, createrawtransaction, signrawtransaction,

and sendrawtransaction facilitate creation, signing, and broadcasting of

transactions, essential for spending mined coins or sending funds.

 dumpprivkey and importprivkey allow key export/import, critical for miner

control of private keys required by MinerSignature.

Network and Node Management

 addnode, getpeerinfo, getconnectioncount provide tools to manage and

monitor network connectivity essential for block propagation.

Account and Address Operations

 getnewaddress, listreceivedbyaddress, setaccount help manage receiving

addresses, balances, and organizational grouping.

Network Layer and Peer Protocol

 The P2P protocol is Bitcoin-compatible with enhancements to support

extended block headers (MinerSignature, hashWholeBlock).

 Network messages include version, block, tx, and RPC over HTTP/JSON

interfaces.

 Peers verify multi-algo proof-of-work and miner signatures before relaying

blocks.

Security and Cryptographic Foundations

 Elliptic Curve Cryptography: secp256k1 curve for key pairs and signatures.

 Multi-Algorithm Hashing: Combining six secure hashes increases resistance

to collision and pre-image attacks.

 Miner Signature: Authenticates miner’s ownership of block and private key,

preventing unauthorized block submission.

 Wallet Encryption: Protects private keys with AES encryption derived from

passphrases.

ZillionCoin innovatively combines multi-algorithm proof-of-work, miner key

binding, and wallet integration to create a decentralized, ASIC-resistant

cryptocurrency. The carefully designed mining algorithms, RPC interfaces, and

wallet lifecycle ensure network security and fair mining opportunities.

Source Code Walkthrough: Mining Algorithms

SPREAD Hash (src/hash.cpp)

 This is a custom hash specific to ZillionCoin (originally from SpreadCoin).

 It combines SHA-256 rounds and a mixing function to maximize diffusion.

Excerpt (simplified):

uint256 SpreadHash(const unsigned char* data, size_t len) {

 uint256 hash1 = SHA256(data, len);

 uint256 mixed = CustomMix(hash1);

 return SHA256(mixed.data(), sizeof(mixed));

}

 CustomMix applies rotations and XORs on hash bytes for extra entropy.

BLAKE Hash (src/sphlib/blake.h and .c)

 Wrapper uses the Blake2b variant optimized for 512-bit output.

 Called via:

sph_blake512_context ctx;

sph_blake512_init(&ctx);

sph_blake512(&ctx, data, len);

sph_blake512_close(&ctx, hash);

 Returns a 512-bit digest truncated to 256 bits as uint256.

SHAVITE Hash (src/sphlib/shavite.h and .c)

 Implements AES-based SHA-3 finalist.

 Similar use as Blake, via:

sph_shavite256_context ctx;

sph_shavite256_init(&ctx);

sph_shavite256(&ctx, data, len);

sph_shavite256_close(&ctx, hash);

JH Hash (src/sphlib/jh.h and .c)

 Provides strong differential resistance.

 Usage pattern:

sph_jh512_context ctx;

sph_jh512_init(&ctx);

sph_jh512(&ctx, data, len);

sph_jh512_close(&ctx, hash);

KECCAK Hash (src/sphlib/keccak.h and .c)

 NIST SHA-3 standard implementation.

 Used as:

sph_keccak512_context ctx;

sph_keccak512_init(&ctx);

sph_keccak512(&ctx, data, len);

sph_keccak512_close(&ctx, hash);

ECHO Hash (src/sphlib/echo.h and .c)

 High-throughput and security-oriented hash.

 Usage:

sph_echo512_context ctx;

sph_echo512_init(&ctx);

sph_echo512(&ctx, data, len);

sph_echo512_close(&ctx, hash);

Source Code Walkthrough: Mining RPC Commands (src/rpcmining.cpp)

getmininginfo

 Returns JSON object with mining stats:

UniValue getmininginfo(const UniValue& params, bool fHelp) {

 UniValue obj(UniValue::VOBJ);

 obj.push_back(Pair("blocks", nBestHeight));

 obj.push_back(Pair("currentblocksize", nLastBlockSize));

 obj.push_back(Pair("difficulty", GetDifficulty()));

 obj.push_back(Pair("networkhashps", GetNetworkHashPS()));

 obj.push_back(Pair("hashalgoorder", GetAlgoOrderString(nBestHeight)));

 return obj; }

 GetAlgoOrderString returns current multi-algo order based on block height.

getblocktemplate

 Supplies miner with candidate block data, including transaction list and

block header.

 Miner uses this to construct valid blocks compliant with ZillionCoin’s rules.

submitblock

 Validates submitted block data, including MinerSignature and multi-algo

hash chain.

 On success, broadcasts block to network.

setgenerate

 Enables/disables mining on local node with thread control.

void setgenerate(const UniValue& params, bool fHelp) {

 bool generate = params[0].get_bool();

 int genprocLimit = params.size() > 1 ? params[1].get_int() : -1;

 SetMining(generate, genprocLimit);}

 Mining thread invokes multi-algo hashing during work.

Wallet Transaction Signing and Mining Reward Generation

Wallet Key Usage in Mining

 The wallet manages secp256k1 private keys required for signing coinbase

transactions and generating the MinerSignature in block headers.

 Miner signs the entire block header (except hashWholeBlock) using its

private key (CKey::Sign() in key.cpp).

 This signature authenticates the miner’s ownership and control, preventing

mining pools from unauthorized block submission.

Coinbase Transaction Construction

 During block template creation (getblocktemplate), the wallet creates a

coinbase transaction paying the mining reward to an address it controls.

 The coinbase transaction output becomes the miner’s reward after

maturity.

 Coinbase transaction includes extra nonce data to allow mining iteration

without reconstructing the entire block.

Transaction Signing Flow

 Transactions are constructed using inputs selected from available UTXOs

(wallet.cpp).

 Inputs are signed individually by calling SignSignature() for each input,

producing ECDSA signatures.

 The wallet supports compact signatures with public key recovery to

minimize transaction size.

 Signed transactions can be serialized and broadcasted via RPC or mining

operations.

Reward Maturity and Spending

 Coinbase outputs mature after a defined number of blocks (e.g., 100).

 Until maturity, these outputs cannot be spent or considered part of the

confirmed balance.

 Once mature, rewards enter the wallet’s confirmed balance, usable for

spending or staking (if applicable).

Example JSON-RPC Request and Response Samples

getmininginfo

Request:

{

 "jsonrpc": "1.0",

 "id": "mininginfo",

 "method": "getmininginfo",

 "params": []

}

Response:

{

 "result": {

 "blocks": 500000,

 "currentblocksize": 123456,

 "difficulty": 2300000000,

 "networkhashps": 1400000000,

 "hashalgoorder": ["SPREAD", "BLAKE", "SHAVITE", "JH", "KECCAK",

"ECHO"],

 "pooledmining": false

 },

 "error": null,

 "id": "mininginfo"

}

getblocktemplate

Request:

{

 "jsonrpc": "1.0",

 "id": "template",

 "method": "getblocktemplate",

 "params": []

}

Response: (Simplified)

{

 "result": {

 "version": 4,

 "previousblockhash": "000000000abc1234...",

 "transactions": [...],

 "coinbasevalue": 1250000000,

 "bits": "1a2b3c4d",

 "height": 500001,

 "algoorder": ["BLAKE", "SHAVITE", "JH", "KECCAK", "ECHO", "SPREAD"]

 },

 "error": null,

 "id": "template"

}

submitblock

Request:

{

 "jsonrpc": "1.0",

 "id": "submit",

 "method": "submitblock",

 "params": [

 "02000000abcdef..." // Serialized block hex with MinerSignature

]

}

Response:

{

 "result": null,

 "error": null,

 "id": "submit"

}

Indicating acceptance and broadcasting.

Mining and Wallet Workflow Diagram (Conceptual)

User/Mining Software

|

v

getblocktemplate --> Wallet creates coinbase tx & block template (with miner

key)

|

v

Local mining:

For nonce in range:

Compute MinerSignature(private key)

Compute multi-algo hash chain

Check difficulty target

|

v

If valid:

submitblock(serialized block with signature)

|

v

Network validates block --> adds to blockchain

|

v

Wallet updates balances, UTXOs, transaction history

Wallet and Address Commands

 addmultisigaddress <nrequired> <'["key","key"]'> [account]

Create a multisig address with nrequired signatures.

 backupwallet <destination>

Backup wallet.dat file.

 createmultisig <nrequired> <'["key","key"]'>

Create raw multisig transaction.

 createrawtransaction [{"txid":txid,"vout":n},...] {address:amount,...}

Create a raw unsigned transaction.

 decoderawtransaction <hex string>

Decode a raw transaction hex.

 dumpprivkey <zillioncoinaddress>

Export private key for an address.

 encryptwallet <passphrase>

Encrypt wallet with passphrase.

 getaccount <zillioncoinaddress>

Get account name for address.

 getaccountaddress <account>

Get address for account.

 getaddressesbyaccount <account>

List addresses for account.

 getbalance [account] [minconf=1]

Get wallet or account balance.

 getnewaddress [account]

Get new address for receiving.

 importprivkey <zillioncoinprivkey> [label] [rescan=true]

Import private key into wallet.

 keypoolrefill

Refill key pool.

 listaccounts [minconf=1]

List accounts and balances.

 listaddressgroupings

List address groupings.

 listlockunspent

List locked unspent outputs.

 listreceivedbyaccount [minconf=1] [includeempty=false]

List received amounts by account.

 listreceivedbyaddress [minconf=1] [includeempty=false]

List received amounts by address.

 listsinceblock [blockhash] [target-confirmations]

List transactions since block.

 listtransactions [account] [count=10] [from=0]

List recent transactions.

 listunspent [minconf=1] [maxconf=9999999] ["address",...]

List unspent outputs.

 lockunspent unlock? [array-of-Objects]

Lock or unlock unspent outputs.

 makekeypair [prefix]

Generate new key pair.

 move <fromaccount> <toaccount> <amount> [minconf=1] [comment]

Move balance between accounts.

 sendfrom <fromaccount> <tozillioncoinaddress> <amount> [minconf=1]

[comment] [comment-to]

Send from account to address.

 sendmany <fromaccount> {address:amount,...} [minconf=1] [comment]

Send to multiple addresses.

 sendrawtransaction <hex string>

Broadcast raw transaction.

 sendtoaddress <zillioncoinaddress> <amount> [comment] [comment-to]

Send to address.

 setaccount <zillioncoinaddress> <account>

Set account for address.

 setmininput <amount>

Set minimum input for spending.

 settxfee <amount>

Set transaction fee.

 signmessage <zillioncoinaddress> <message>

Sign message with address private key.

 signrawtransaction <hex string>

[{"txid":txid,"vout":n,"scriptPubKey":hex,"redeemScript":hex},...]

[<privatekey1>,...] [sighashtype="ALL"]

Sign raw transaction.

 validateaddress <zillioncoinaddress>

Validate an address.

 verifychain [check level] [num blocks]

Verify blockchain integrity.

 verifymessage <zillioncoinaddress> <signature> <message>

Verify signed message.

Network and Node Commands

 addnode <node> <add|remove|onetry>

Add or remove node.

 getaddednodeinfo <dns> [node]

Info on added nodes.

 getconnectioncount

Number of connections.

 getpeerinfo

Peer info.

 getrawmempool

List unconfirmed txs.

 stop

Stop the node.

Blockchain Commands

 getbestblockhash

Get latest block hash.

 getblock <hash> [verbose=true]

Get block info.

 getblockcount

Get block height.

 getblockhash <index>

Get block hash by height.

 getdifficulty

Get current difficulty.

 getinfo

General node info.

 getrawtransaction <txid> [verbose=0]

Get raw transaction data.

 getreceivedbyaccount <account> [minconf=1]

Amount received by account.

 getreceivedbyaddress <zillioncoinaddress> [minconf=1]

Amount received by address.

 gettransaction <txid>

Transaction info.

 gettxout <txid> <n> [includemempool=true]

Get transaction output info.

 gettxoutsetinfo

UTXO set stats.

Mining Commands

 getgenerate

Mining enabled status.

 gethashespersec

Local miner hash rate.

 getmininginfo

Mining stats including multi-algo order.

 getnetworkhashps [blocks] [height]

Network hash rate.

 getwork [data, coinbase]

Legacy mining work distribution.

 submitblock <hex data> [optional-params-obj]

Submit mined block.

 setgenerate <generate> [genproclimit]

Enable/disable mining.

Raw Transaction and Block Construction

 createrawtransaction [{"txid":txid,"vout":n},...] {address:amount,...}

Create raw transaction.

 decoderawtransaction <hex string>

Decode raw transaction.

ZILLIONCOIN IS PART OF THE ZILLIONGRID

ZillionGrid:

Decentralized

Hybrid

Blockchain

Infrastructure

https://www.zillionpress.com/ZillionGrid_WhitePaper_Version1_Phase1.pdf

https://www.zillionpress.com/ZillionGrid_WhitePaper_Version1_Phase1.pdf

